Zedong Wang

Dunyu Road 600 310030 Hangzhou China **L** +86 136 0259 1515 🧹 jackywang28@outlook.com wangzedong@westlake.edu.cn zedongwang.netlify.app

LinkedIn in

Google Scholar 🞓

OpenReview 🏠

Contribute: 2, Stars: 623

GitHub 😱

Citations: 65, H-index: 4

Short Biography

I am an HK-born researcher. I obtained my B.Eng. in Electronic and Information Engineering from HUST. My research interests center around visual representation learning from 3 aspects: (i) Data mixing augmentation and label efficient learning (Data-level); (ii) Efficient deep network architecture design (Network-level); (iii) Vector Quantized representation learning and generation (Framework-level). Moreover, I am also interested in AI for Genomics applications. Currently, I am a visiting student in CAIRI AI Lab under Chair Prof. Stan Z. Li (IEEE Fellow, IAPR Fellow) at Westlake University. Previously, I worked on few-shot semantic segmentation fortunately supervised by Prof. Xinggang Wang at HUST. I was a visiting student at MMLab, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) in 2021 summer. Before that, I conducted a research internship remotely at Key Lab of Digital Earth Science, CAS, 2020.

Education and Degrees

2019 – 2023 B.Eng. in Electronic and Information Engineering, Huazhong University of Science and Technology.

- Multiple High Quality Computer Vision Research Experience | Undergrad Supervisor: Prof. Xinggang Wang.
- Graduation Thesis: Efficient Visual Backbone Architecture Design | Grade: 92/100 (First-Tier, Full Novelty Scores) Advisor: Prof. Xinggang Wang | Co-advisor: Chair Prof. Stan Z. Li
- High GPA in Al-related core courses (90.0/100 in Average): Introduction to Green Communications (95/100), Engineering Training (94/100), Multimedia Retrieval (93/100), Graduation Thesis (92/100), Software Project (92/100), Principles and Applications of Sensors (90/100), Python programming (87/100), Capstone Project in Machine Intelligence (87/100), Deep Learning and Computer Vision (87/100), Machine Learning (85/100) etc.

Research Experience

Dec. 2023	Ph.D. Offer, Advisor: Chair Prof. Stan Z. Li, AI Division, School of Engineering, Westlake University.
Jun. 2023	China Society of Image and Graphics (CSIG) Student Member, CS/G
Dec. 2022	Ph.D. Offer (fail to enroll due to my HK origin), Al Division, School of Engineering, Westlake University.
Sep. 2022 –	Visiting Student (visual representation learning), CAIRI AI Lab (Chair Prof. Stan Z. Li Lab), Westlake University.
Present	(i) Data Mixing for visual representation learning. Co-first author: SAMix; Maintenance: OpenMixup (529 stars on GitHub)
	(ii) Efficient Network Architecture Design for visual representation learning. Co-first author: MogaNet (94 stars on GitHub).
	(iii) Semi-supervised Learning & Vector Quantized Representation Learning. SemiReward; OpenSTL (NeurlPS 2023).
	(iv) Genomic Sequence Pre-training with Vector Quantization Network.
Jul. 2022 –	Summer Research Studentship, School of Engineering, Westlake University.
Sep. 2022	Advisor: Chair Prof. Stan Z. Li (2 selected out of 100+ applicants) Research Topic: Visual Representation Learning.
Sep. 2021 – Jun. 2022	Research Intern, HUST Vision Lab, School of EIC, Huazhong University of Science and Technology. Advisor: Prof. Xinggang Wang Research Topic: Efficient Visual Recognition & Few-shot Semantic Segmentation
Jul 2021	Visiting Student MM/Lab Shanzhan Institute of Advanced Teach (SIAT) Chinese Academy of Sciences
Son 2021 -	Advisor: Dr. Bin Eu Besearch Topic: Somentic Sogmentation
Sep. 2021	
Sep. 2020 -	Research Intern, Key Lab of Digital Earth Science, Chinese Academy of Sciences.
Apr. 2021	Advisor: Dr. Xlaoping Du Research Topic: High Resolution Remote Sensing Building Semantic Segmentation.
	Languages and Strongths

Languages and Strengths

Chinese (native), English (fluent). IELTS 7.5 (2023) overall grades, CET-4 646 overall grades. Python DL Libraries, PyTorch, Git, Anaconda, Linux (basic), LATEX, All-round Research Skills.

Great Research Taste, Enthusiasm, Recognized Writing & Story Telling Skills.

Publications (*: Equivalent Contribution. [†] : Corresponding Author. Links are provided)
NeurIPS 2023 OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning . Cheng Tan, Siyuan Li, Zhangyang Gao, Wenfei Guan, Zedong Wang , Zicheng Liu, Lirong Wu, Stan Z. Li [†]
 The first comprehensive benchmarking study for spatio-temporal predictive learning that categorized prevalent approaches into recurrent-based and recurrent-free models.
 The first modular and extensible framework implementing various state-of the art methods. Impartial evaluations and analysis are conducted across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow, weather forecasting. Surprisingly, we find that recurrent-free models achieve a good balance between efficiency.
and performance than recurrent models.
All positive ratings in NeurIPS 2023 (6,6,7,7) Accepted as Poster by NeurIPS 2023
to ICLR 2024 Efficient Multi-order Gated Aggregation Network . Siyuan Li*, Zedong Wang *, Zicheng Liu, Cheng Tan, Haitao Lin, Di Wu, Zhiyuan Chen, Jiangbin Zheng, Stan Z. Li [†]
The first network backbone design through the lens of multi-order game-theoretic interaction, which portrays inter-variable interaction effects w.r.t. varying scale of context via game theory.
 The most representative interaction strengths are emphasized by the proposed spatial gated aggregation and channel reallocation module, leading to better representation learning quality.
 Impressive scalability and superior performance with a more efficient use of model parameters than state-of-the-art ViTs and ConvNets on various computer vision benchmarks.
Spontaneously forwarded by world-wide media (Twitter, Zhihu, Wechat) with high appraisal.
Two Weak Accept ratings in CVPR 2023, One Strong Accept rating in ICCV 2023.
to CVPR 2024 Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup . Siyuan Li*, Zicheng Liu*, Zedong Wang *, Di Wu, Zihan Liu, Stan Z. Li [†]
 A unified online-optimizable mixup framework that first addresses the two remaining critical issues at once: (i) Drastic performance variation over different scenarios caused by trivial solutions; (ii) Self-supervised learning (SSL) dilemma for online-optimizable mixup policies. To reduce the computational cost from online training, a pre-trained version is presented. Exceptional performance and generalizability across 12 SL and SSL image benchmarks.
to ICLR 2024 OpenMixup: Open Mixup Toolbox for Visual Representation Learning.
Siyuan Li*, Zedong Wang *, Zicheng Liu*, Di Wu, Stan Z. Li ¹
 The first comprehensive mixup visual classification benchmark, where 16 representative mixup algorithms are impartially evaluated from scratch across 12 visual classification datasets, ranging from classical iconic scenarios to fine-grained, long-tail, and scenic cases.
 The first standardized mixup-based vision model design and training codebase framework OpenMixup for customized visual classification.
 Interesting observations are derived through extensive empirical analysis on various scenarios. Spontaneously retweeted by Prof. Sebastian Raschka (Twitter) with high appraisal.
• Spontaneously reported by Lightning Al official account (Twitter) as 'weakly highlights in Al'. (the same session as pytorch's departure of facebook)
to ICLR 2024 SemiReward: A General Reward Model for Semi-supervised Learning . Siyuan Li*, Weiyang Jin*, Zedong Wang , Fang Wu, Zicheng Liu, Cheng Tan, Stan Z. Li [†]
• The first online-optimizable reward model that predicts reward scores to filter out high-quality pseudo labels for semi-supervised representation learning (both classification and regression).
State-of-the-art across 12 classification and regression semi-supervised learning benchmarks.